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INTRODUCTION 
 

Mechanical shock pulses are often analyzed in terms of shock response spectra, as 
discussed in Reference 1.  The shock response spectrum assumes that the shock pulse is 
applied as a common base input to an array of independent single-degree-of-freedom 
systems.  The shock response spectrum gives the peak response of each system with 
respect to the natural frequency.  Damping is typically fixed at a constant value, such as 
5%, which is equivalent to an amplification factor of Q=10. 
 

A similar tool is available for vibration.  This tool is the vibration response spectrum.  
This function gives the root-mean-square response of each system to an acceleration base 
input.1  The base input is an acceleration power spectral density. 
 

The vibration response spectrum is particularly suited for random vibration inputs.  Pure 
sinusoidal vibration, on the other hand, can be dealt with using time domain methods. 
 

The vibration response spectrum has many uses.  The purpose of this tutorial is to present 
this function and give an example of a typical application. 
 

 
EQUATION OF MOTION 
 

Consider a single degree-of-freedom system 
 
 
 
 
 
 
 
 
 
 
where m equals mass, c equals the viscous damping coefficient, and k equals the 
stiffness.  The absolute displacement of the mass equals x, and the base input 
displacement equals y.  

                                                           
1  A vibration response spectrum may also be given in terms of the 3 amplitude.  The 3 value is 
equal to three times the root-mean-square value assuming that the mean value is zero. 
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The free-body diagram is 
 
 
 
 
 
 
 
 
 
 
 
 

Summation of forces in the vertical direction, 
 

  xmF                                                                                            (1a) 

 
)xy(k)xy(cxm                                                                                      (1b) 

 
Define a relative displacement 
 

z = x - y                                                                                               (2) 

 
Substituting the relative displacement terms into equation (1b) yields 
 

kzzc)yz(m                                                                                  (3) 
 

ymkzzczm                                                                                  (4) 

Dividing through by mass yields, 
 

yz)m/k(z)m/c(z                                                                          (5) 
 

By convention, 

2
n)m/k(

n2)m/c(





 

where n is the natural frequency in (radians/sec), and  is the damping ratio. 
 
Substituting the convention terms into equation (5) yields 
 

yz2
nzn2z                                                                       (6) 

 
The derivation is continued in Appendix A.  The derivation is based on References 2 and 
3. 

  m 
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SOLUTION APPROACHES 
 

Options 
 

There are two approaches to solving equation (6) for the case where the excitation is in 
the form of a base input power spectral density.   Each approach yields an equation for 
the root-mean-square acceleration response of the mass. 
  
Miles Equation 
 

The first approach is called Miles equation.  This approach yields a simple equation for 
the absolute acceleration response GRMSx . 

 

  )nf(PSDAŶ
2
nf

2
,nfGRMSx 
















                                                                (7) 

 

where 
 

nf       is the natural frequency, 
 

)f(Ŷ nPSDA      is the base input acceleration power spectral density. 

 
Note that the base input amplitude is taken at the natural frequency.  The derivation 
assumes that this amplitude is constant across the entire frequency domain, from zero to 
infinity. 
 

Miles equation should only be used if the power spectral density amplitude is flat within 
one octave on either side of the natural frequency.   
 
General Approach 
 

The second approach allows the power spectral density to vary with frequency and to be 
defined over a finite frequency domain.   
 

The resulting response equation is 
 
 

   
   

nf/ifi,
N

1i
if)if(PSDAŶ
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,nfGRMSx
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








 


                              (8) 

 
 

Equation (8) appears cumbersome.  In reality, it can be easily implemented via a 
computer program.  The remainder of this report will use this general equation rather 
than the restrictive Miles equation. 
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STATISTICS 
 
The vibration response spectrum is typically represented in terms of Acceleration 
Response (GRMS) versus Natural Frequency (Hz). 
 

Note that the GRMS value is equal to the standard deviation assuming zero mean.  The 
standard deviation is represented as 1.  
 

The response time history has the probability characteristics shown in Table 1 assuming a 
normal distribution. 
 
 

Table 1.   
Statistical Probabilities for a Normal Distribution 
Probability inside    1 Limits =  68.27% 

Probability outside  1 Limits =  31.73% 
 
Probability inside    3 Limits =  99.73% 

Probability outside  3 Limits =  0.27% 
 

 
 
 
MIL-STD-1540C EXAMPLE 
 

Avionics components must be subjected to random vibration tests to verify the integrity 
of parts and workmanship.  The components are mounted to a shaker table for this 
testing. The components are typically powered and monitored during these tests. 
 

The test specifications may come from established standards or from measured flight 
data.  An example of a power spectral density specification from MIL-STD-1540C is 
shown in Figure 1 and in Table 2.  This level is applied as a base input to the avionics 
component. 
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Figure 1.  

 
 

Table 2. 
MIL-STD-1540C 
Acceptance Level, 
6.1 GRMS Overall  

Frequency 
(Hz) 

Accel 
(G^2/Hz) 

20 0.0053 
150 0.04 
600 0.04 

2000 0.0036 
 

 
Now consider an avionics component which is to be tested to the MIL-STD-1540C level.  
Assume that the component consist of a metal housing and a circuit board.  Further 
assume that the circuit board can be modeled as a single-degree-of-freedom system with 
an amplification factor of Q=10.   
 

How will the circuit board respond to the input level?   The response amplitude depends 
on the natural frequency.  The response power spectral density is shown for three natural 
frequency cases in Figure 2. 
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Figure 2. 
 
 

Each response curve in Figure 2 is calculated using the transfer magnitude function 
which is embedded in equation (8).  The next task is to calculate the area under each 
response curve.  The square root of the area is the GRMS value for the particular natural 
frequency.  
 

Note that equation (8) performs the complete calculation from the base input level to the 
GRMS response for each natural frequency.  Plotting the individual response curves is 
optional.   
 

The GRMS values for the response curves in Figure 2 are shown in Table 3.  
 

Table 3.  Vibration Response Spectra, Q=10  

Natural Frequency 
(Hz) 

Response Accel 
(GRMS) 

100 6.4 
200 11.1 
300 13.7 
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These steps are repeated via equation (8) for a family of natural frequencies in order to 
generate the complete vibration response spectrum, as shown in Figure 3.   Note that the 
curve in Figure 3 passes through the coordinates in Table 3. 
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Figure 3. 
 
 
 
The curve in Figure 3 can be used for design purposes.  It can also be used to evaluate the 
severity of the test.  The worst-case point is (600 Hz, 18.9 GRMS).   A design goal might 
be to avoid this natural frequency. 
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TEST LEVEL DERIVATION EXAMPLE 
 
Avionics Component  
 

Need for Test Level 
 

The purpose of this example is to show how the vibration response spectrum can be used 
to derive a component vibration test level from flight data.    
 

Consider an avionics transponder which is to be mounted inside the fuselage of a 
supersonic fighter aircraft.  The component will be subjected to flight vibration from a 
number of sources.  A maximum expected flight level is required so that a test level can 
be derived.  Note that the test level must envelop the maximum expected flight level plus 
some margin.    
 

Excitation Sources 
 

The aircraft will encounter aerodynamic buffeting as it accelerates through the transonic 
velocity.  Note that shock waves begin to form on the aircraft as it approaches the 
transonic velocity.  These shock waves could excite fuselage skin bending modes.  
Turbulent boundary layers could likewise excite structural modes. 
 

In addition, the transponder will be excited by structural-borne vibration from the 
turbofan engines. 
 
Measured Data from Flight Test 
 

A prototype test aircraft is instrumented with accelerometers.  It is then flown through a 
variety of harsh maneuvers.  One of the accelerometers is mounted adjacent to the 
transponder.  A power spectral density of the data from this accelerometer is given in 
Figure 4.  This power spectral density is considered as the base input to the component. 
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              Figure 4. 
 
 
Proposed Maximum Expected Flight Data 
 

The next step is to derive a maximum expected flight level.  The maximum expected 
flight level does not need to be so finely tailored that it envelops each spectral peak.   
 

Note that there could be some frequency variation in these peaks, for example, as 
external armaments are reconfigured.  Variation could also occur depending on the 
trajectory of a particular flight.  Furthermore, the aircraft might be produced in different 
version.  The naval version could have a stiffened fuselage to endure harsh carrier 
landings.  The stiffened fuselage could have higher natural frequencies than the air force 
version. 
 

Thus, a more prudent approach is to derive a generic maximum expected flight level 
consisting of several segments in a power spectral density function. 
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A proposed maximum expected flight level is given in Figure 5, along with the measured 
flight data.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         Figure 5. 
 
 
The proposed flight level has an overall level of 8.4 GRMS, which is higher than the 
measured flight level of 6.5 GRMS.  The overall GRMS level is the square root of the 
area under the power spectral density curve.  It is also the standard deviation of the 
corresponding time history, assuming a zero mean. 
 

Clearly, the proposed maximum flight level does not envelop every spectral peak of the 
measured data.  In particular, the measured data has a peak at 650 Hz which protrudes 
above the proposed level.  Again, this frequency could shift in a different vehicle 
configuration. 
 

On the other hand, the vibration response spectrum of the proposed level envelops that of 
the measured data as shown in Figure 6.  The spectra were calculated using equation (8).  
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The proposed level was in fact designed using equation (8) in a trial-and-error manner.  
The goal was to design an input power spectral density which would envelop the flight 
curve in terms of vibration response spectra. 
 

Note that the vibration response spectrum smoothes the flight data peaks.  Also note that 
the X-axis is given in terms of natural frequency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 6.
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Test Level Derivation 
 

The proposed level is thus accepted as the maximum expected flight level on the basis on 
the vibration response spectrum comparison.  The breakpoints for the maximum expected 
level are given in Table 4. 
 
 

 Table 4. 
Power Spectral Density, 
Maximum Expected Flight 
Level,  
8.4 GRMS Overall  

 Frequency 
(Hz) 

Accel 
(G^2/Hz) 

 10 0.004 
 50 0.015 
 400 0.04 
 1600 0.04 
 2000 0.02 
 
 

A test level can now be derived from the maximum expected level by adding appropriate 
margins and safety factors.   
 

For example, the level could be increased to compensate for the fact that the transponder 
will only be tested for several minutes on a vibration shaker, even though the unit will be 
expected to function during several thousand hours of flight time.  
 

The amount of margin also depends on the policies of the vendor, the customer, and 
government agencies.  Note the U.S. Department of Defense has set up certain guidelines 
and requirements for avionics test levels.  The requirements are given in documents such 
as MIL-STD-1540C and MIL-STD-810E. 
 

Furthermore, two test levels need to be derived.  The first level is an acceptance test 
level.  This level must envelop the maximum expected flight level.  It must also be 
sufficient to uncover latent defects in parts and workmanship, such as bad solder joints.  
Each component must pass an acceptance test before it is mounted in an aircraft.   
 

The other level is the qualification level, which is typically 6 dB higher than the 
acceptance level.  The purpose of the qualification test is to verify the design integrity.  
Only a few units will be subjected to qualification testing.  These units will not be flown. 
 

A derivation of the final test levels is beyond the scope of this report.  The purpose of this 
example was simply to demonstrate the use of the vibration response spectrum in 
transforming measured flight data into a maximum expected flight level.  The maximum 
expected flight level would then serve as a basis for test levels. 
 

Again, the vibration response spectrum has many other uses, some of which will be 
included in future revisions of this tutorial. 
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APPENDIX A 

 
Acceleration Response Derivation 
 
Recall equation (6) from the main text. 
 

yz2
nzn2z                                                                       (A-1) 

 
Now take the Fourier transform of each side  

 

    dttjeydttjez2
nzn2z 





                                 (A-2) 

 
 
Note that the approach used here is rigorous.  Simpler approaches are often used in other 
references. 
 
Let 

 

  dttje)t(x)(X

dttje)t(y)(Y














 

 
 
Now take the Fourier transform of the velocity term 
 
 

  dttje
dt

)t(dz
dttje)t(z 

 







                                                                  (A-3) 

 
 
Integrate by parts 
 

    dttje)j)](t(z[tje)t(zddttje)t(z 








                         (A-4) 

 

  dttje)t(z)j(tje)t(zdttje)t(z 








                                 (A-5) 

 

.limitstheapproachestase)t(z tj 



 0                                                (A-6) 
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  dttje)t(z)j(dttje)t(z 



                                                      (A-7) 

 
 

  )(X)j(dttje)t(z 
                                                                     (A-8) 

 
 
Furthermore 
 

  dttje
2dt

)t(z2d
dttje)t(z 

 












                                                               (A-9) 

 
 

  dttje)j(
dt

)t(dz
[tje

dt

)t(dz
ddttje)t(z 






 






 

                     (A-10) 

 
 

  dttje
dt

)t(dz
)j(tje

dt

)t(dz
dttje)t(z 









                                 (A-11) 

 

limits.theapproachestas0tje
dt

)t(dz 




                                            (A-12) 

 
 

  dttje
dt

)t(dz
)j(dttje)t(z 




                                                       (A-13) 

 

  )(Z)j)(j(dttje)t(z 
                                                           (A-14) 

 
 

  )(Z2dttje)t(z 
                                                              (A-15) 

 
 

Recall  

    dttjeydttjez2
nzn2z 





                      (A-16) 
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Let the subscript A denote acceleration.  By substitution, 
 

 )(Y)(Z2
n)(Z)n2(j)(Z2

A                                       (A-17) 
 
 

  )(Y)(Z2j)( An
22

n                                                    (A-18) 
 
 

n
22

n

A

2j)(

)(Y
)(Z




                                                                    (A-19) 

 
 

)(Z2)(ZA                                                                                (A-20) 
 

 

n
22

n

A
2

A
2j)(

)(Y
)(Z




                                                                        (A-21) 

 
The relative acceleration equation can be expressed in terms of Fourier transforms as 
 

)(Y)(X)(Z AAA                                                                            (A-22) 
 

)(Y)(Z)(X AAA                                                                            (A-23) 
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n

A
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A 
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)(X
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                                                       (A-25) 

 
 

n
22

n

An
2

n
A

2j)(

)(Y]2j[
)(X




                                                                        (A-26) 
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Multiply each side by its complex conjugate 
 
 

  n
22

nn
22

n

*
AAn

2
nn

2
n*

AA
2j)(2j)(

)(Y)(Y]2j][2j[
)(X)(X




                                   (A-27) 

 
 

2
n

222
n

*
AA

2
n

4
n*

AA
)2()(

)(Y)(Y])2([
)(X)(X




                                                        (A-28) 

 

2
n

222
n

*
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The Fourier transforms are converted into power spectral densities using the method 
shown in Reference 3, where T is the duration. 
 
 

)(XT/)(X)(Xlim PSDA
*

AAT                                                            (A-30) 
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Equation (A-32) can be transformed as a function of frequency f as follows 
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Let f fn  /  
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The overall response GRMSx  can be obtained by integrating )f(X̂ PSDA  across the 

frequency spectrum and then taking the square root of the area. 
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Often the function  ( )Y fA PSD  is available only in a digital format.  The integral can thus 

be replaced by a summation.  Note thatfi is usually a constant. 
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APPENDIX B 
 
 
 
Relative Displacement Derivation 
 
Recall 
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Multiply by the complex conjugate 
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The overall relative displacement RMS is 
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(B-7) 

 
 

The relative displacement RMS value for digital data is 
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